log2 [C/C++] 프로젝트 오일러 #99 Largest Exponential(수학) 문제는 여러 쌍의 숫자로 이루어진 데이터에서 각 쌍이 \(a^b\) 형태로 표현될 때, 가장 큰 값을 가지는 쌍의 위치를 찾는 것입니다. 여기서 a와 b는 양의 정수입니다.예를 들어, 다음과 같은 쌍이 있다고 가정합니다:1. \(2^{11}\)2. \(3^7\)3. \(6^3\)각각의 값을 계산하면:• \( 2^{11} = 2048 \)• \( 3^7 = 2187 \)• \( 6^3 = 216 \)이 중에서 가장 큰 값은 2187이므로, 두 번째 쌍 (3, 7)이 답이 됩니다. 이 경우 결과는 2번째 줄을 나타냅니다.문제가 간단하게 보여도 제곱해야 하는 수가 크면, 실제 값의 크기는 컴퓨터로 계산하기 힘듭니다. \( 632382^{518061} \gt 519432^{525806} \) 의 경우와 같이 밑.. 2024. 11. 21. [C/C++] 프로젝트 오일러 #63 제곱수의 자릿수 세기 제곱수 문제이긴 하지만, 의외로 이 문제는 쉽습니다. 난이도도 5%입니다. 문제는 n자리의 수중에 어떤 수의 n제곱이 되는 수가 몇개나 존재할까입니다. 예를 들어서 \(16807=7^5\) 인데, 16807은 5자리의 수이고 7의 5제곱이 되는 수죠. 이 문제의 링크는 아래에 있습니다.https://projecteuler.net/problem=63 Problem 63 - Project EulerThe 5-digit number, 16807=75, is also a fifth power. Similarly, the 9-digit number, 134217728=89, is a ninth power. How many n-digit positive integers exist which are also a.. 2016. 6. 21. 이전 1 다음 728x90